
ATTRICI - 
counterfactual climate 
for impact attribution 
Short fact sheet for the methods discussed in Mengel et al. (submitted). 

Summary 
Climate has changed over the past century due to anthropogenic greenhouse gas 
emissions. In parallel, societies and their environment have evolved rapidly. To identify 
the impacts of historical climate change on human or natural systems, it is therefore 
necessary to separate the effect of different drivers. By definition this is done by 
comparing the observed situation to a counterfactual one in which climate change is 
absent and other drivers change according to observations. As such a counterfactual 
baseline cannot be observed, it has to be estimated by process-based or empirical 
models. We here present ATTRICI (ATTRIbuting Climate Impacts), an approach to 
remove the signal of global warming from observational climate data to generate forcing 
data for the simulation of a counterfactual baseline of impact indicators. Our method 
identifies the interannual and annual cycle shifts that are correlated to global mean 
temperature change. We use quantile mapping to a baseline distribution that removes 
the global mean temperature related shifts to find counterfactual values for the observed 
daily climate data. Applied to each variable of two climate datasets, we produce two 
counterfactual datasets that are made available through the Inter-Sectoral Impact Model 
Intercomparison Project (ISIMIP) along with the original datasets. Our method 
preserves the internal variability of the observed data in the sense that observed 
(factual) and counterfactual data for a given day remain in the same quantile in their 
respective statistical distribution. That makes it possible to compare observed impact 
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events and counterfactual impact events. Our approach adjusts for the long-term trends 
associated with global warming but does not address the attribution of climate change 
to anthropogenic greenhouse gas emissions. 

Approach 
Assuming that "climate change refers to any long-term trend in climate, irrespective of 
its cause" (IPCC 2014, chap. 18) we here present a method to develop time series of 
stationary “no climate change” climate data from observational daily data by removing 
the long-term trend while preserving the internal day-to-day variability. 

We use a functional form (finite number of periodic Fourier modes) to model the annual 
cycle of each climate variable. We set up probability models with explicit 
representations of the statistical distribution of the climate variables, which allows for 
non-normal distributions to represent our data. This is particularly important for a 
probability model of precipitation that can account for positivity constraints and separate 
trends in the number of wet days and the intensity of precipitation on wet days. We use 
global mean temperature instead of time as a predictor of the long-term changes in the 
different climate variables. 

We aim to capture the statistics of a climate variable in the historical record with a 
parametric distribution A. This distribution evolves in time through the time dependence 
of its parameters. We model the parameters as linear functions of both the global mean 
temperature T and the annual cycle. We produce a counterfactual distribution B from 
the factual distribution A by restricting T to the early period in which it does not deviate 
significantly from zero. The probabilistic model is illustrated for daily temperatures at an 
exemplary grid cell in panel A of Figure 1. 

We utilize the distributions A and B to quantile-map each value from the observed 
dataset to a counterfactual value. Quantile mapping is different for each day of the time 
series because our approach accounts for the annual cycle and a change in the annual 
cycle. In Figure 1 the quantile mapping step is shown for an exemplary day. We obtain 
the percentile of the factual (i.e. observed) temperature (blue dot in panel A) at that day 
from the factual cumulative distribution function (CDF) (blue line in panel B). We then 
obtain the counterfactual temperature (orange dot in panel A) from the counterfactual 
CDF (orange line in panel B) at the same percentile. 



 
Figure 1: Illustration of quantile mapping sensitive to the annual cycle. Panel A shows 
factual (blue points) and counterfactual (orange points) daily mean near-surface air 
temperature for the year 2016 of the GSWP3-W5E5 for a single grid cell in the 
Mediterranean region at 43.25°N, 5.25°E. In panel A, the blue and orange lines show 
the temporal evolution of the expected value μ (50th percentile) of the factual and the 
counterfactual distribution. In panel B, the blue and orange lines show the factual and 
counterfactual cumulative distribution function (CDF) for a single day (October 25th, 
2016). The large blue and orange points in panel A show the factual and counterfactual 
daily mean temperature on October 25th. They correspond to the 95th percentile in their 
respective distributions. 

Variables 
We model the different climatic variables using the statistical distributions listed below. 



Variable Short name Unit Statistical 
distributions 

Daily Mean Near-Surface 
Air Temperature 

tas K Gaussian 

Daily Near-Surface 
Temperature Range 

tasrange K Gaussian 

Daily Near-Surface 
Temperature Skewness 

tasskew 1 Gaussian 

Daily Minimum 
Near-Surface Air 
Temperature 

tasmin K Derived from tas, 
tasrange and tasskew 

Daily Maximum 
Near-Surface Air 
Temperature 

tasmax K Derived from tas, 
tasrange and tasskew 

Precipitation pr kg m-2 s-1 Bernoulli-Gamma 

Surface Downwelling 
Shortwave Radiation 

rsds W m-2 Gaussian 

Surface Downwelling 
Longwave Radiation 

rlds W m-2 Gaussian 

Surface Air Pressure ps Pa Gaussian 

Near-Surface Wind Speed sfcWind m s-1 Weibull 



Near-Surface Relative 
Humidity 

hurs % Gaussian 

Near-Surface Specific 
Humidity 

huss kg kg-1 Derived from hurs ps 
and tas 

Table 1: Specs of climate variables for the ISIMIP3b counterfactual climate datasets. 
The variables tasrange and tasskew are auxiliary variables to calculate tasmin and 
tasmax 

For tasmin and tasmax, we do not estimate counterfactual time series individually to 
avoid large relative errors in the daily temperature range as pointed out by (Piani et al. 
2010). Following (Piani et al. 2010), we estimate counterfactuals of the daily 
temperature range tasrange = tasmax - tasmin and the skewness of the daily 
temperature tasskew = (tas - tasmin) / tasrange. A counterfactual huss is derived from 
the counterfacual tas, ps and hurs using the equations of Buck (1981) as described in 
Weedon et al. (2010).  

References 
Buck, A.L.:New Equations for Computing Vapor Pressure and Enhancement Factor, J. 
Appl. Meteorol., 20, 1527–1532, 1981. 

Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and 
Haerter, J. O.: Statistical bias correction of global simulated daily precipitation and 
temperature for the application of hydrological models, J. Hydrol., 395, 199–215, 
https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010. 

IPCC 2014: Climate Change 2014 – Impacts, Adaptation and Vulnerability: Global and 
Sectoral Aspects. Cambridge University Press. 
https://doi.org/10.1017/CBO9781107415379. 

Salvatier J., Wiecki T.V., Fonnesbeck C. (2016) Probabilistic programming in Python 
using PyMC3. PeerJ Computer Science 2:e55 DOI: 10.7717/peerj-cs.55. 

Weedon, G. P., Gomes, S., Viterbo, P., Österle, H., Adam, J. C., Bellouin, N., Boucher, 
O., and Best, M.: The WATCH forcing data 1958–2001: A meteorological forcing 
dataset for land surface and hydrological models, in: Technical Report no 22., available 



at: http://www.eu-watch.org/publications/technical-reports (last access: July 2016), 
2010. 


